Auma Actuators Sq 07.2- F05 /F07

China Auma Actuators Sq 07.2-F05/F07, Find details about China Auma Actuator, Auma Actuators Sq 07.2-F05/F07 from Auma Actuators Sq 07.2-F05/F07

Model NO.
SQ 07.2-F05/F07
Trademark
SEMC
Specification
efficiency 90, temp -30 to +70, Lubricant F15,
Origin
China
HS Code
85023169
Model NO.
SQ 07.2-F05/F07
Trademark
SEMC
Specification
efficiency 90, temp -30 to +70, Lubricant F15,
Origin
China
HS Code
85023169

An actuator is a part of a device or machine that helps it to achieve physical movements by converting energy, often electrical, air, or hydraulic, into mechanical force. Simply put, it is the component in any machine that enables movement.

Sometimes, to answer the question of what does an actuator do, the process is compared to the functioning of a human body. Like muscles in a body that enable energy to be converted to some form of motion like the movement of arms or legs, actuators work in a machine to perform a mechanical action.
 

HOW DO LINEAR ACTUATORS WORK?

Defined simply, an actuator is a device that converts energy, which may be electric, hydraulic, pneumatic, etc., to mechanical in such a way that it can be controlled. The quantity and the nature of input depend on the kind of energy to be converted and the function of the actuator. Electric and piezoelectric actuators, for instance, work on the input of electric current or voltage, for hydraulic actuators, its incompressible liquid, and for pneumatic actuators, the input is air. The output is always mechanical energy.

Actuators are not something you would read about every day in media, unlike artificial intelligence and machine learning. But the reality is that it plays a critical role in the modern world almost like no other device ever invented.

In the industrial mechatronics systems, for instance, they are solely responsible for ensuring a device such as a robotic arm is able to move when electric input is provided. Your car uses actuators in the engine control system to regulate air flaps for torque and optimization of power, idle speed, and fuel management for ideal combustion.

Actuators are not something you would read about every day in media, unlike artificial intelligence and machine learning. But the reality is that it plays a critical role in the modern world almost like no other device ever invented.

They are not just seen in large applications. At home, actuators are the critical devices that help you to set up consoles or cabinets that could hold televisions and can be opened at the touch of a button. They are also seen in TV and table lifts which users can adjust through electric switches or buttons at their convenience.

Fancy a recliner to watch the TV? In all likelihood, it has a movable head or footrest that uses an actuator too. Home automation systems that can intuitively close window blinds depending on the amount of light streaming in are also dependent on actuators. In short, their use is endless because any mechanical movement requires them, and most devices require some form of mechanical movement.

Following are the usual components that are part of the functioning of an actuator:

  • Power source: This provides the energy input that is necessary to drive the actuator. These are often electric or fluid in nature in the industrial sectors.
  • Power converter: The role of the power converter is to supply power from the source to the actuator in accordance with the measurements set by the controller. Hydraulic proportional valves and electrical inverters are examples of power converters in industrial systems.
  • Actuator: The actual device that converts the supplied energy to mechanical force.
  • Mechanical load: The energy converted by the actuator is usually used to make a mechanical device function. The mechanical load refers to this mechanical system that is being driven by the actuator.
  • Controller: A controller ensures that the system functions seamlessly with the appropriate input quantities and other setpoints decided by an operator.